Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Hiroko Kakuda ${ }^{\text {a* }}$ and Motoo Shiro ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratory of Chemistry, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan, and
${ }^{\text {b }}$ Rigaku Corporation, Matsubara-cho 3-9-12, Akishima, Tokyo, 196-8666, Japan

Correspondence e-mail:
chemk@ms.toyama-mpu.ac.jp

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.046$
$w R$ factor $=0.081$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(2S)-2-[(1R)-1-lodoethyl]-1-(4-methylphenylsulfonyl)pyrrolidine

The spectroscopically confused title compound, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{INO}_{2} \mathrm{~S}$, wrongly assigned previously, has been crystallographically identified. The relative configuration is the $\left(R^{*}, S^{*}\right)$ form and not the $\left(R^{*}, R^{*}\right)$ type as previously reported.

Comment

The title compound, (I), was obtained by (i) N -chlorination of $N-[(E)$-4-hexenyl $](4$-methylbenzene)sulfonamide with $\quad N$ chlorosuccinimide (NCS), and then (ii) iodocycloamination with NaI , as shown in the scheme. The spectroscopic data $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR) were unexpectedly identical to those of a compound that had been synthesized from (Z)-1-iodo-4hexene with chloramine-T and which has been reported as having an $\left(R^{*}, R^{*}\right)$ configuration (Minakata et al., 2002). Having a heavy element (iodine) in the molecule allowed for the assignment of the absolute configuration. Consequently, the relative configuration was confirmed, as shown in Fig. 1 to be (R^{*}, S^{*}).

The sum of the bond angles at the sulfonamide N atom is 346°, with an average angle of 115°. Pyramidal N atoms have average angles in the range $108-114^{\circ}$. The five-membered ring has the following puckering parameters (Cremer \& Pople, 1975): $q_{2}=0.394$ (5) \AA and $\varphi_{2}=280.4$ (7) ${ }^{\circ}$. The latter parameter is closer to the value (288°) for an envelope conformation than that of a twist conformation $\left(270^{\circ}\right) . \mathrm{C} 4$ is the envelope flap.

Experimental

The title compound was prepared by a partially modified method of another route reported by Minakata et al. (2002). A solution of N -[(E)-4-hexenyl]-4-methylbenzenesulfonamide $\quad(0.056 \mathrm{mmol}) \quad$ and N-chlorosuccinimide (0.061 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(0.7 \mathrm{ml})$ was stirred overnight under N_{2}. Subsequently, $\mathrm{NaI}(0.067 \mathrm{mmol})$ was added to the reaction mixture, and stirring was continued overnight. The reaction mixture was diluted with diethyl ether and washed with 5% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The aqueous layer was extracted by diethyl ether. The combined organic layers were washed with brine and dried over MgSO_{4}. The solvent was removed to yield the crude title compound. Recrystallization from an ethyl acetate solution gave small colorless needles (m.p. 399-402 K). Spectroscopic analysis: IR (KBr): v 1445, 1376, 1341, 1154, 994, $815 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$; assignments aided by a COSY spectrum; coupling constants in Hz): δ

Figure 1
An ORTEPII (Johnson, 1976) drawing of the molecule of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The packing of (I), viewed down the a axis.
1.34-1.40 $\left(1 \mathrm{H}, m, \mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{a}}\right), 1.77-1.92\left(3 \mathrm{H}, m, \mathrm{NCH}_{2} \mathrm{CH}_{\mathrm{b}}\right.$ and $\left.\mathrm{NCHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.87\left(3 \mathrm{H}, d, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.44\left(3 \mathrm{H}, s, \mathrm{ArCH}_{3}\right), 3.12$ $(1 \mathrm{H}, d d d, J=4.7,5.6$ and $7.7 \mathrm{~Hz}, \mathrm{NCH}), 3.36-3.38\left(2 \mathrm{H}, m, \mathrm{NCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, $4.77(1 \mathrm{H}, d q, J=4.7,6.8,6.8$ and $6.8 \mathrm{~Hz}, \mathrm{CHI}), 7.33(2 \mathrm{H}, d, J=8.1 \mathrm{~Hz}$,
$\mathrm{H}_{\text {arom }}$ of Ts), $7.75\left(2 \mathrm{H}, d, J=8.1 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right.$ of Ts$) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ ($125 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;$ assignments aided by an HMQC spectrum): $\delta 21.6$ $\left(\mathrm{ArCH}_{3}\right), 24.5\left(\mathrm{NCH}_{2}-\mathrm{CH}_{2}-\right), 25.1\left(\mathrm{CH}_{3}\right), 30.4\left(\mathrm{NCH}-\mathrm{CH}_{2}-\right), 36.8$ $(\mathrm{CHI}), 49.4\left(\mathrm{NCH}_{2}\right), 65.5(\mathrm{NCH}), 127.6\left(\mathrm{C}_{\text {arom }} \mathrm{H}\right.$ of Ts $), 129.8\left(\mathrm{C}_{\text {arom }} \mathrm{H}\right.$ of Ts), 135.1 ($\mathrm{C}_{\text {arom }}$ of Ts), 143.7 ($\mathrm{C}_{\text {arom }}$ of Ts).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{INO}_{2} \mathrm{~S}$
$M_{r}=379.26$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.2297$ (4) \AA 。
$b=12.2538$ (8) \AA
$c=19.3613$ (13) \AA
$V=1477.99(17) \AA^{3}$
$Z=4$
$D_{x}=1.704 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (Higashi, 1995)
$T_{\text {min }}=0.510, T_{\text {max }}=0.694$
17233 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.081$
$S=1.04$
2702 reflections
166 parameters
H -atom parameters constrained
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 16475 reflections
$\theta=3.6-68.2^{\circ}$
$\mu=18.30 \mathrm{~mm}^{-1}$
$T=93.1 \mathrm{~K}$
Needle, colorless
$0.15 \times 0.03 \times 0.02 \mathrm{~mm}$

> 2702 independent reflections
> 2426 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
> $R_{\text {int }}=0.099$
> $\theta_{\max }=68.2^{\circ}$
> $h=-7 \rightarrow 7$
> $k=-14 \rightarrow 14$
> $l=-22 \rightarrow 23$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=1.47 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.75 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1110 Friedel Pairs
Flack parameter: -0.014 (9)

H atoms were refined using a riding model ($\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$), with $U_{\text {iso }}(\mathrm{H})$ set equal to 1.2 (1.5 for methyl groups) times $U_{\text {eq }}$ of the bonded C atom. The puckering parameters were calculated by PLATON (Spek, 2003). The highest electron-density peak was found about 1 A from atom I8.

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC \& Rigaku Corporation, 2005); program(s) used to solve structure: SIR97 (Altomare, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo 196-8666,, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Minakata, S., Kano, D., Oderaotoshi, Y. \& Komatsu, M. (2002). Org. Lett. 4, 2097-2099.
Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo 196-8666, Japan.
Rigaku/MSC \& Rigaku Corporation (2005). CrystalStructure. Version 3.70. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Tokyo 196-8666, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

